

Théorème de Pythagore

Racine carrée d'un nombre positif :

Définition:

a désigne un nombre **positif**.

La racine carrée de a est le nombre **positif** dont le carré est a.

On la note \sqrt{a} . (lire « racine carrée de a »).

Ainsi : $(\sqrt{a})^2 = a$

Exemple:

 $\sqrt{49} = 7$ car 7 est le nombre positif dont le carré est 49.

 $\sqrt{0.25} = 0.5$ car 0.5 est le nombre positif dont le carré est 0.25.

 $\sqrt{\frac{4}{9}} = \frac{2}{3} \operatorname{car} \frac{2}{3} \operatorname{est}$ le nombre positif dont le carré est $\frac{4}{9}$ $\left(\left(\frac{2}{3} \right)^2 = \frac{4}{9} \right)$

Définition:

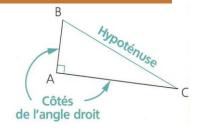
- Un carré parfait est le carré d'un nombre entier.
- La racine carrée d'un carré parfait est un nombre entier.

$\sqrt{}$	IK .	0	1	2	3	4	5	6	7	8	9	10	11	12	_
													121		

II. La propriété de Pythagore :

Propriété:

Si le triangle ABC est rectangle en A, alors $BC^2 = AB^2 + AC^2$



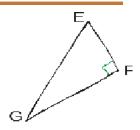
Calculer une longueur:

On donne EF = 5 cm et GF = 8 cm. Calculer EG. On sait que : le triangle EFG est rectangle en F

 $\underline{\text{or}}$: d'après le théorème de Pythagore on a : $EG^2 = EF^2 + GF^2$

 $\underline{\text{donc}} : EG^2 = 5^2 + 8^2$ $EG^2 = 25 + 64 = 89$

 $EG = \sqrt{89} \approx 9.4 \ cm$ arrondi au dixième près.



On donne MP = 3 cm et MN = 7 cm. Calculer NP.

On sait que : le triangle MNP est rectangle en P

<u>or</u>: d'après le théorème de Pythagore on a : $MN^2 = MP^2 + NP^2$

 $donc: 7^2 = 3^2 + NP^2$

 $49 = 9 + NP^2$

 $NP^2 = 49 - 9 = 40$

 $NP = \sqrt{40} \approx 6.32 \ cm$ arrondi au centième près.

